Statement of the Problem

- Lack of standard practices for rough rice (RR) storage
- Scenarios:
 - Over-drying = lower RR mass, higher drying cost
 - Under-drying = microbial growth, reduction in quality

Significance of the Problem

- Sustainability
 - Drying = energy intensive
- Food Safety
 - Toxigenic molds
 - Pathogenic bacteria?
- Rice Quality
 - Color (microbial pigmentation)
 - Milleability
 - Milling yields

Specific Aims

I. Determine impact of storage moisture content (MC) and temperature on concentration of molds and aerobic plate count (APC) bacteria in RR stored over a 12-month period
II. Investigate the association of microbial concentrations over time with quality issues including color, milleability, and milling yields

Molds: Why do we care?

- “Fungus that grows in the form of multicellular filaments called hyphae”
- Widely distributed and almost always present
- Growth influenced by:
 - Moisture content
 - Temperature
 - Condition of grain
 - Storage time
 - Insects/pests
- Problems caused:
 - Grain quality/spotage
 - Poisonous mycotoxins

What are APC bacteria?
What are APC bacteria?

- Bacteria that can grow between 30 to 35°C in the presence of oxygen
- Mesophiles
- Elevated APC associated with:
 - Rapid spoilage
 - Low product shelf life
 - Broad phenotypic and genetic diversity
 - Antagonistic; pathogenic; endophytic

Experimental Design

Harvested rice: 3 lots
Cleaning
Oven MC
Slow drying to various 4 MCs
14%
13%
15%
12%

Storage in incubators at 2 temperatures
Periodic measurements for quality attributes

September 2016 to September 2017

Methods

- Recovery of microbes [elution]
- Surface (hand massage)
- Total (stomacher)
- 3M Petrifilm Aerobic Count
 - 35°C, 48 h
- 3M Petrifilm Yeast and Mold Count
 - 25°C, 120 h

Results

What are the trends?

Does location matter?

Which variable drives microbial quality?
Effect of storage temperature

- All locations combined*
- All MC levels combined
- Surface and total elution combined*
- P<0.0001 between temperatures at all time points

Mold counts by temperature and MC.

APC by temperature and MC.
Conclusions

What’s next?

What did we learn?

- Variations across harvest locations, however...
 - Microbial quality of RR over time is impacted more by storage temperature as opposed to moisture content
- Surface versus ‘total’ elution
 - Marginal increase in microbial concentrations
 - 0.5 to 1 log

Next steps

- All samples stored for gDNA extraction
- Metagenomic analysis of fungi and bacteria
- Identification of genus and species level organisms
- Changes over time?
- Different composition by treatment?
- Analyze microbial data with rice quality attributes
 - Is what’s best for controlling microbes, best for rice quality?
- Ongoing work
 - Storage study with pure line versus hybrid at 25°C

Acknowledgements

- Gibson Lab
 - Giselle Almeida
 - Witijun Deng
 - Cailin Dawley
 - Kacy Wright
- UA Rice Processing Program
 - Terry Siebenmorgen
 - Bhagwati Prakash
 - Sheerita Kumari
- USDA Hatch Act Funding